Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 14(4): e073639, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631839

RESUMO

INTRODUCTION: Characterised by chronic inflammation of the gastrointestinal tract, inflammatory bowel disease (IBD) symptoms including diarrhoea, abdominal pain and fatigue can significantly impact patient's quality of life. Therapeutic developments in the last 20 years have revolutionised treatment. However, clinical trials and real-world data show primary non-response rates up to 40%. A significant challenge is an inability to predict which treatment will benefit individual patients.Current understanding of IBD pathogenesis implicates complex interactions between host genetics and the gut microbiome. Most cohorts studying the gut microbiota to date have been underpowered, examined single treatments and produced heterogeneous results. Lack of cross-treatment comparisons and well-powered independent replication cohorts hampers the ability to infer real-world utility of predictive signatures.IBD-RESPONSE will use multi-omic data to create a predictive tool for treatment response. Future patient benefit may include development of biomarker-based treatment stratification or manipulation of intestinal microbial targets. IBD-RESPONSE and downstream studies have the potential to improve quality of life, reduce patient risk and reduce expenditure on ineffective treatments. METHODS AND ANALYSIS: This prospective, multicentre, observational study will identify and validate a predictive model for response to advanced IBD therapies, incorporating gut microbiome, metabolome, single-cell transcriptome, human genome, dietary and clinical data. 1325 participants commencing advanced therapies will be recruited from ~40 UK sites. Data will be collected at baseline, week 14 and week 54. The primary outcome is week 14 clinical response. Secondary outcomes include clinical remission, loss of response in week 14 responders, corticosteroid-free response/remission, time to treatment escalation and change in patient-reported outcome measures. ETHICS AND DISSEMINATION: Ethical approval was obtained from the Wales Research Ethics Committee 5 (ref: 21/WA/0228). Recruitment is ongoing. Following study completion, results will be submitted for publication in peer-reviewed journals and presented at scientific meetings. Publications will be summarised at www.ibd-response.co.uk. TRIAL REGISTRATION NUMBER: ISRCTN96296121.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doença de Crohn/tratamento farmacológico , Colite Ulcerativa/terapia , Medicina de Precisão , Estudos Prospectivos , Qualidade de Vida , Doenças Inflamatórias Intestinais/tratamento farmacológico , Estudos Observacionais como Assunto , Estudos Multicêntricos como Assunto
2.
Nature ; 626(8001): 1094-1101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383783

RESUMO

Persistent SARS-CoV-2 infections may act as viral reservoirs that could seed future outbreaks1-5, give rise to highly divergent lineages6-8 and contribute to cases with post-acute COVID-19 sequelae (long COVID)9,10. However, the population prevalence of persistent infections, their viral load kinetics and evolutionary dynamics over the course of infections remain largely unknown. Here, using viral sequence data collected as part of a national infection survey, we identified 381 individuals with SARS-CoV-2 RNA at high titre persisting for at least 30 days, of which 54 had viral RNA persisting at least 60 days. We refer to these as 'persistent infections' as available evidence suggests that they represent ongoing viral replication, although the persistence of non-replicating RNA cannot be ruled out in all. Individuals with persistent infection had more than 50% higher odds of self-reporting long COVID than individuals with non-persistent infection. We estimate that 0.1-0.5% of infections may become persistent with typically rebounding high viral loads and last for at least 60 days. In some individuals, we identified many viral amino acid substitutions, indicating periods of strong positive selection, whereas others had no consensus change in the sequences for prolonged periods, consistent with weak selection. Substitutions included mutations that are lineage defining for SARS-CoV-2 variants, at target sites for monoclonal antibodies and/or are commonly found in immunocompromised people11-14. This work has profound implications for understanding and characterizing SARS-CoV-2 infection, epidemiology and evolution.


Assuntos
COVID-19 , Inquéritos Epidemiológicos , Infecção Persistente , SARS-CoV-2 , Humanos , Substituição de Aminoácidos , Anticorpos Monoclonais/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Evolução Molecular , Hospedeiro Imunocomprometido/imunologia , Mutação , Infecção Persistente/epidemiologia , Infecção Persistente/virologia , Síndrome Pós-COVID-19 Aguda/epidemiologia , Síndrome Pós-COVID-19 Aguda/virologia , Prevalência , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Seleção Genética , Autorrelato , Fatores de Tempo , Carga Viral , Replicação Viral
3.
Cell Rep ; 42(11): 113373, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37967008

RESUMO

Phages and lipids in human milk (HM) may benefit preterm infant health by preventing gastrointestinal pathobiont overgrowth and microbiome modulation. Lipid association may promote vertical transmission of phages to the infant. Despite this, interrelationships between lipids and phages are poorly characterized in preterm HM. Shotgun metagenomics and untargeted lipidomics of phage and lipid profiles from 99 preterm HM samples reveals that phages are abundant and prevalent from the first week and throughout the first 100 days of lactation. Phage-host richness of preterm HM increases longitudinally. Core phage communities characterized by Staphylococcus- and Propionibacterium-infecting phages are significantly correlated with long-chain fatty acid abundances over lactational age. We report here a phage-lipid interaction in preterm HM, highlighting the potential importance of phage carriage in preterm HM. These results reveal possible strategies for phage carriage in HM and their importance in early-life microbiota development.


Assuntos
Bacteriófagos , Leite Humano , Lactente , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Viroma , Lactação , Ácidos Graxos
4.
Proc Biol Sci ; 290(2009): 20231284, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37848057

RESUMO

The Office for National Statistics Coronavirus (COVID-19) Infection Survey (ONS-CIS) is the largest surveillance study of SARS-CoV-2 positivity in the community, and collected data on the United Kingdom (UK) epidemic from April 2020 until March 2023 before being paused. Here, we report on the epidemiological and evolutionary dynamics of SARS-CoV-2 determined by analysing the sequenced samples collected by the ONS-CIS during this period. We observed a series of sweeps or partial sweeps, with each sweeping lineage having a distinct growth advantage compared to their predecessors, although this was also accompanied by a gradual fall in average viral burdens from June 2021 to March 2023. The sweeps also generated an alternating pattern in which most samples had either S-gene target failure (SGTF) or non-SGTF over time. Evolution was characterized by steadily increasing divergence and diversity within lineages, but with step increases in divergence associated with each sweeping major lineage. This led to a faster overall rate of evolution when measured at the between-lineage level compared to within lineages, and fluctuating levels of diversity. These observations highlight the value of viral sequencing integrated into community surveillance studies to monitor the viral epidemiology and evolution of SARS-CoV-2, and potentially other pathogens.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Reino Unido/epidemiologia , Inquéritos e Questionários
5.
Sci Rep ; 13(1): 15854, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740013

RESUMO

The microbiota of the built environment is linked to usage, materials and, perhaps most importantly, human health. Many studies have attempted to identify ways of modulating microbial communities within built environments to promote health. None have explored how these complex communities assemble initially, following construction of new built environments. This study used high-throughput targeted sequencing approaches to explore bacterial community acquisition and development throughout the construction of a new build. Microbial sampling spanned from site identification, through the construction process to commissioning and use. Following commissioning of the building, bacterial richness and diversity were significantly reduced (P < 0.001) and community structure was altered (R2 = 0.14; P = 0.001). Greater longitudinal community stability was observed in outdoor environments than indoor environments. Community flux in indoor environments was associated with human interventions driving environmental selection, which increased 10.4% in indoor environments following commissioning. Increased environmental selection coincided with a 12% reduction in outdoor community influence on indoor microbiomes (P = 2.00 × 10-15). Indoor communities became significantly enriched with human associated genera including Escherichia, Pseudomonas, and Klebsiella spp. These data represent the first to characterize the initial assembly of bacterial communities in built environments and will inform future studies aiming to modulate built environment microbiota.


Assuntos
Promoção da Saúde , Microbiota , Humanos , Ambiente Construído , Sequenciamento de Nucleotídeos em Larga Escala , Klebsiella
6.
Curr Opin Microbiol ; 75: 102379, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37647765

RESUMO

Acquisition and development of the gut microbiome are vital for immune education in neonates, especially those born preterm. As such, microbial communities have been extensively studied in the context of postnatal health and disease. Bacterial communities have been the focus of research in this area due to the relative ease of targeted bacterial sequencing and the availability of databases to align and validate sequencing data. Recent increases in high-throughput metagenomic sequencing accessibility have facilitated research to investigate bacteriophages within the context of neonatal gut microbial communities. Focusing on unexplored viral diversity, has identified novel bacteriophage species and previously uncharacterised viral diversity. In doing so, studies have highlighted links between bacteriophages and bacterial community structure in the context of health and disease. However, much remains unknown about the complex relationships between bacteriophages, the bacteria they infect and their human host. With a particular focus on preterm infants, this review highlights opportunities to explore the influence of bacteriophages on developing microbial communities and the tripartite relationships between bacteriophages, bacteria and the neonatal human host. We suggest a focus on expanding collections of isolated bacteriophages that will further our understanding of the growing numbers of bacteriophages identified in metagenomes.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Recém-Nascido , Lactente , Humanos , Saúde do Lactente , Recém-Nascido Prematuro , Bacteriófagos/genética
7.
Nat Microbiol ; 8(6): 1160-1175, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37231089

RESUMO

Clostridium perfringens is an anaerobic toxin-producing bacterium associated with intestinal diseases, particularly in neonatal humans and animals. Infant gut microbiome studies have recently indicated a link between C. perfringens and the preterm infant disease necrotizing enterocolitis (NEC), with specific NEC cases associated with overabundant C. perfringens termed C. perfringens-associated NEC (CPA-NEC). In the present study, we carried out whole-genome sequencing of 272 C. perfringens isolates from 70 infants across 5 hospitals in the United Kingdom. In this retrospective analysis, we performed in-depth genomic analyses (virulence profiling, strain tracking and plasmid analysis) and experimentally characterized pathogenic traits of 31 strains, including 4 from CPA-NEC patients. We found that the gene encoding toxin perfringolysin O, pfoA, was largely deficient in a human-derived hypovirulent lineage, as well as certain colonization factors, in contrast to typical pfoA-encoding virulent lineages. We determined that infant-associated pfoA+ strains caused significantly more cellular damage than pfoA- strains in vitro, and further confirmed this virulence trait in vivo using an oral-challenge C57BL/6 murine model. These findings suggest both the importance of pfoA+ C. perfringens as a gut pathogen in preterm infants and areas for further investigation, including potential intervention and therapeutic strategies.


Assuntos
Clostridium perfringens , Doenças do Recém-Nascido , Lactente , Recém-Nascido , Humanos , Animais , Camundongos , Clostridium perfringens/genética , Recém-Nascido Prematuro , Estudos Retrospectivos , Virulência/genética , Genômica
8.
JAMA Netw Open ; 6(3): e231165, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857051

RESUMO

Importance: The effect of using an exclusive human milk diet compared with one that uses bovine products in preterm infants is uncertain, but some studies demonstrate lower rates of key neonatal morbidities. A potential mediating pathway is the gut microbiome. Objective: To determine the effect of an exclusive human milk diet on gut bacterial richness, diversity, and proportions of specific taxa in preterm infants from enrollment to 34 weeks' postmenstrual age. Design, Setting, and Participants: In this randomized clinical trial conducted at 4 neonatal intensive care units in the United Kingdom from 2017 to 2020, microbiome analyses were blind to group. Infants less than 30 weeks' gestation who had only received own mother's milk were recruited before 72 hours of age. Statistical analysis was performed from July 2019 to September 2021. Interventions: Exclusive human milk diet using pasteurized human milk for any shortfall in mother's own milk supply and human milk-derived fortifiers (intervention) compared with bovine formula and bovine-derived fortifier (control) until 34 weeks' postmenstrual age. Fortifier commenced less than 48 hours of tolerating 150 mL/kg per day. Main Outcomes and Measures: Gut microbiome profile including alpha and beta diversity, and presence of specific bacterial taxa. Results: Of 126 preterm infants enrolled in the study, 63 were randomized to control (median [IQR] gestation: 27.0 weeks [26.0-28.1 weeks]; median [IQR] birthweight: 910 g [704-1054 g]; 32 [51%] male) and 63 were randomized to intervention (median [IQR] gestation: 27.1 weeks [25.7-28.1 weeks]; median [IQR] birthweight: 930 g [733-1095 g]; 38 [60%] male); 472 stool samples from 116 infants were analyzed. There were no differences in bacterial richness or Shannon diversity over time, or at 34 weeks between trial groups. The exclusive human milk diet group had reduced relative abundance of Lactobacillus after adjustment for confounders (coefficient estimate, 0.056; P = .03), but not after false discovery rate adjustment. There were no differences in time to full feeds, necrotizing enterocolitis, or other key neonatal morbidities. Conclusions and Relevance: In this randomized clinical trial in preterm infants using human milk-derived formula and/or fortifier to enable an exclusive human milk diet, there were no effects on overall measures of gut bacterial diversity but there were effects on specific bacterial taxa previously associated with human milk receipt. These findings suggest that the clinical impact of human milk-derived products is not modulated via microbiomic mechanisms. Trial Registration: ISRCTN trial registry identifier: ISRCTN16799022.


Assuntos
Microbioma Gastrointestinal , Lactente , Recém-Nascido , Animais , Bovinos , Masculino , Humanos , Feminino , Leite Humano , Recém-Nascido Prematuro , Peso ao Nascer , Dieta
9.
Nat Microbiol ; 7(10): 1525-1535, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36163498

RESUMO

The development of the gut microbiome from birth plays important roles in short- and long-term health, but factors influencing preterm gut microbiome development are poorly understood. In the present study, we use metagenomic sequencing to analyse 1,431 longitudinal stool samples from 123 very preterm infants (<32 weeks' gestation) who did not develop intestinal disease or sepsis over a study period of 10 years. During the study period, one cohort had no probiotic exposure whereas two cohorts were given different probiotic products: Infloran (Bifidobacterium bifidum and Lactobacillus acidophilus) or Labinic (B. bifidum, B. longum subsp. infantis and L. acidophilus). Mothers' own milk, breast milk fortifier, antibiotics and probiotics were significantly associated with the gut microbiome, with probiotics being the most significant factor. Probiotics drove microbiome transition into different preterm gut community types (PGCTs), each enriched in a different Bifidobacterium sp. and significantly associated with increased postnatal age. Functional analyses identified stool metabolites associated with PGCTs and, in preterm-derived organoids, sterile faecal supernatants impacted intestinal, organoid monolayer, gene expression in a PGCT-specific manner. The present study identifies specific influencers of gut microbiome development in very preterm infants, some of which overlap with those impacting term infants. The results highlight the importance of strain-specific differences in probiotic products and their impact on host interactions in the preterm gut.


Assuntos
Bifidobacterium bifidum , Microbioma Gastrointestinal , Probióticos , Antibacterianos , Bifidobacterium/genética , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro
10.
Front Pediatr ; 10: 856520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558373

RESUMO

Human milk oligosaccharides, proteins, such as lactoferrin, and bacteria represent just some of the bioactive components of mother's breast milk (BM). Bacteriophages (viruses that infect bacteria) are an often-overlooked component of BM that can cause major changes in microbial composition and metabolism. BM bacteriophage composition has been explored in term and healthy infants, suggesting vertical transmission of bacteriophages occurs between mothers and their infants. Several important differences between term and very preterm infants (<30 weeks gestational age) may limit this phenomenon in the latter. To better understand the link between BM bacteriophages and gut microbiomes of very preterm infants in health and disease, standardised protocols are required for isolation and characterisation from BM. In this study, we use isolated nucleic acid content, bacteriophage richness and Shannon diversity to validate several parameters applicable during bacteriophage isolation from precious BM samples. Parameters validated include sample volume required; centrifugal sedimentation of microbes; hydrolysis of milk samples with digestive enzymes; induction of temperate bacteriophages and concentration/purification of isolated bacteriophage particles in donor milk (DM). Our optimised method enables characterisation of bacteriophages from as little as 0.1 mL BM. We identify viral families that were exclusively identified with the inclusion of induction of temperate bacteriophages (Inoviridae) and hydrolysis of milk lipid processes (Iridoviridae and Baculoviridae). Once applied to a small clinical cohort we demonstrate the vertical transmission of bacteriophages from mothers BM to the gut of very preterm infants at the species level. This optimised method will enable future research characterising the bacteriophage composition of BM in very preterm infants to determine their clinical relevance in the development of a healthy preterm infant gut microbiome.

11.
mSystems ; 7(3): e0012922, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35579384

RESUMO

Dietary manipulation with high-protein or high-carbohydrate content are frequently employed during elite athletic training, aiming to enhance athletic performance. Such interventions are likely to impact upon gut microbial content. This study explored the impact of acute high-protein or high-carbohydrate diets on measured endurance performance and associated gut microbial community changes. In a cohort of well-matched, highly trained endurance runners, we measured performance outcomes, as well as gut bacterial, viral (FVP), and bacteriophage (IV) communities in a double-blind, repeated-measures design randomized control trial (RCT) to explore the impact of dietary intervention with either high-protein or high-carbohydrate content. High-dietary carbohydrate improved time-trial performance by +6.5% (P < 0.03) and was associated with expansion of Ruminococcus and Collinsella bacterial spp. Conversely, high dietary protein led to a reduction in performance by -23.3% (P = 0.001). This impact was accompanied by significantly reduced diversity (IV: P = 0.04) and altered composition (IV and FVP: P = 0.02) of the gut phageome as well as enrichment of both free and inducible Sk1virus and Leuconostoc bacterial populations. Greatest performance during dietary modification was observed in participants with less substantial shifts in community composition. Gut microbial stability during acute dietary periodization was associated with greater athletic performance in this highly trained, well-matched cohort. Athletes, and those supporting them, should be mindful of the potential consequences of dietary manipulation on gut flora and implications for performance, and periodize appropriately. IMPORTANCE Dietary periodization is employed to improve endurance exercise performance but may impact on gut microbial communities. Bacteriophage are implicated in bacterial cell homeostasis and have been identified as biomarkers of disequilibrium in the gut ecosystem possibly brought about through dietary periodization. We find high-carbohydrate and high-protein diets to have opposing impacts on endurance performance in highly trained athlete populations. Reduced performance is linked with disturbance of microbial stasis in the gut. We demonstrate bacteriophage communities are the most sensitive component of the gut microbiota to increased gut stress following dietary manipulation. Athletes undertaking dietary periodization should be aware of potential negative impacts of drastic changes to dietary composition on gut microbial stasis and, in turn, endurance performance.


Assuntos
Microbioma Gastrointestinal , Humanos , Resistência Física , Dieta , Atletas , Carboidratos da Dieta
12.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199338

RESUMO

The fecal metabolome in early life has seldom been studied. We investigated its evolution in pre-term babies during their first weeks of life. Multiple (n = 152) stool samples were studied from 51 babies, all <32 weeks gestation. Volatile organic compounds (VOCs) were analyzed by headspace solid phase microextraction gas chromatography mass spectrometry. Data were interpreted using Automated Mass Spectral Deconvolution System (AMDIS) with the National Institute of Standards and Technology (NIST) reference library. Statistical analysis was based on linear mixed modelling, the number of VOCs increased over time; a rise was mainly observed between day 5 and day 10. The shift at day 5 was associated with products of branched-chain fatty acids. Prior to this, the metabolome was dominated by aldehydes and acetic acid. Caesarean delivery showed a modest association with molecules of fungal origin. This study shows how the metabolome changes in early life in pre-term babies. The shift in the metabolome 5 days after delivery coincides with the establishment of enteral feeding and the transition from meconium to feces. Great diversity of metabolites was associated with being fed greater volumes of milk.


Assuntos
Fezes/química , Metabolômica/métodos , Compostos Orgânicos Voláteis/análise , Cesárea/estatística & dados numéricos , Nutrição Enteral , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Modelos Lineares , Gravidez , Microextração em Fase Sólida
13.
J Cyst Fibros ; 20(6): 994-1002, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33358119

RESUMO

BACKGROUND: The objective of this study was to explore the clinical and microbiological outcomes associated with substituting inhaled aztreonam lysine for an intravenous antibiotic in the treatment of acute pulmonary exacerbations of CF. METHODS: An open-label randomised crossover pilot trial was conducted at a UK CF centre among 16 adults with CF and P. aeruginosa infection. Median [IQR] age was 29.5 [24.5-32.5], mean ± SD forced expiratory volume in 1 second (FEV1) was 52.4 ± 14.7 % predicted. Over the course of two exacerbations, participants were randomised to sequentially receive 14 days of inhaled aztreonam lysine plus IV colistimethate (AZLI+IV), or dual IV antibiotics (IV+IV). Primary outcome was absolute change in % predicted FEV1. Other outcomes evaluated changes in quality of life, bacterial load and the lung microbiota. RESULTS: The difference between mean change in lung function at day 14 between AZLI+IV and IV+IV was +4.6% (95% CI 2.1-7.2, p=0.002). The minimum clinically important difference of the Cystic Fibrosis Revised Questionnaire (CFQ-R) was achieved more frequently with AZLI+IV (10/12, 83.3%) than IV+IV (7/16, 43.8%), p=0.05. No differences were observed for modulation of serum white cell count, C-reactive protein or sputum bacterial load. Microbiome compositional changes were observed with IV+IV (Bray-Curtis r2=0.14, p=0.02), but not AZLI+IV (r2=0.03, p=0.64). CONCLUSION: In adults with CF and P. aeruginosa infection experiencing an acute pulmonary exacerbation, AZLI+IV improved lung function and quality of life compared to the current standard treatment. These findings support the need for larger definitive trials of inhaled antibiotics in the acute setting. CLINICAL TRIAL REGISTRATION: EudraCT 2016-002832-34 ClinicalTrials.org NCT02894684.


Assuntos
Antibacterianos/administração & dosagem , Aztreonam/administração & dosagem , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Administração por Inalação , Adulto , Estudos Cross-Over , Feminino , Humanos , Masculino , Projetos Piloto , Exacerbação dos Sintomas , Reino Unido
14.
PLoS One ; 15(3): e0229745, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163446

RESUMO

Ionic liquids are salts used in a variety of industrial processes, and being relatively non-volatile, are proposed as environmentally-friendly replacements for existing volatile liquids. Methylimidazolium ionic liquids resist complete degradation in the environment, likely because the imidazolium moiety does not exist naturally in biological systems. However, there is limited data available regarding their mammalian effects in vivo. This study aimed to examine the effects of exposing mice separately to 2 different methylimidazolium ionic liquids (BMI and M8OI) through their addition to drinking water. Potential effects on key target organs-the liver and kidney-were examined, as well as the gut microbiome. Adult male mice were exposed to drinking water containing ionic liquids at a concentration of 440 mg/L for 18 weeks prior to examination of tissues, serum, urine and the gut microbiome. Histopathology was performed on tissues and clinical chemistry on serum for biomarkers of hepatic and renal injury. Bacterial DNA was isolated from the gut contents and subjected to targeted 16S rRNA sequencing. Mild hepatic and renal effects were limited to glycogen depletion and mild degenerative changes respectively. No hepatic or renal adverse effects were observed. In contrast, ionic liquid exposure altered gut microbial composition but not overall alpha diversity. Proportional abundance of Lachnospiraceae, Clostridia and Coriobacteriaceae spp. were significantly greater in ionic liquid-exposed mice, as were predicted KEGG functional pathways associated with xenobiotic and amino acid metabolism. Exposure to ionic liquids via drinking water therefore resulted in marked changes in the gut microbiome in mice prior to any overt pathological effects in target organs. Ionic liquids may be an emerging risk to health through their potential effects on the gut microbiome, which is implicated in the causes and/or severity of an array of chronic disease in humans.


Assuntos
Microbioma Gastrointestinal , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Líquidos Iônicos/administração & dosagem , Líquidos Iônicos/farmacologia , Administração Oral , Animais , Bactérias/classificação , Bile/metabolismo , Biodiversidade , Microbioma Gastrointestinal/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Metaboloma , Camundongos Endogâmicos C57BL
15.
J Pediatr Gastroenterol Nutr ; 70(1): 12-19, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31714477

RESUMO

OBJECTIVES: Microbial communities influencing health and disease are being increasingly studied in preterm neonates. There exists little data, however, detailing longitudinal microbial acquisition, especially in the most extremely preterm (<26 weeks' gestation). This study aims to characterize the development of the microbiota in this previously under-represented cohort. METHODS: Seven extremely preterm infant-mother dyads (mean gestation 23.6 weeks) were recruited from a single neonatal intensive care unit. Oral and endotracheal secretions, stool, and breast milk (n = 157 total), were collected over the first 60 days of life. Targeted 16S rRNA gene sequencing identified bacterial communities present. RESULTS: Microbiota of all body sites were most similar immediately following birth and diverged longitudinally. Throughout the sampling period Escherichia, Enterococcus, Staphylococcus, and an Enterobacteriaceae were dominant and well dispersed across all sites. Temporal divergence of the stool from other microbiota was driven by decreasing diversity and significantly greater proportional abundance of Bifidobacteriaceae compared to other sites. CONCLUSIONS: Four taxa dominated all anatomical sampling sites. Rare taxa promoted dissimilarity. Cross-seeding between upstream communities and the stool was demonstrated, possibly relating to buccal colostrum/breast milk exposure and indwelling tubes. Given the importance of dysbiosis in health and disease of extremely preterm infants, better understanding of microbial acquisition within this context may be of clinical benefit.


Assuntos
Secreções Corporais/microbiologia , Fezes/microbiologia , Lactente Extremamente Prematuro , Microbiota , Leite Humano/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino , RNA Ribossômico 16S/análise , Traqueia/microbiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-28634574

RESUMO

Necrotising enterocolitis (NEC) and sepsis are serious diseases of preterm infants that can result in feeding intolerance, the need for bowel resection, impaired physiological and neurological development, and high mortality rates. Neonatal healthcare improvements have allowed greater survival rates in preterm infants leading to increased numbers at risk of developing NEC and sepsis. Gut bacteria play a role in protection from or propensity to these conditions and have therefore, been studied extensively using targeted 16S rRNA gene sequencing methods. However, exact epidemiology of these conditions remain unknown and the role of the gut microbiota in NEC remains enigmatic. Many studies have confounding variables such as differing clinical intervention strategies or major methodological issues such as the inability of 16S rRNA gene sequencing methods to determine viable from non-viable taxa. Identification of viable community members is important to identify links between the microbiota and disease in the highly unstable preterm infant gut. This is especially important as remnant DNA is robust and persists in the sampling environment following cell death. Chelation of such DNA prevents downstream amplification and inclusion in microbiota characterisation. This study validates use of propidium monoazide (PMA), a DNA chelating agent that is excluded by an undamaged bacterial membrane, to reduce bias associated with 16S rRNA gene analysis of clinical stool samples. We aim to improve identification of the viable microbiota in order to increase the accuracy of clinical inferences made regarding the impact of the preterm gut microbiota on health and disease. Gut microbiota analysis was completed on stools from matched twins (n = 16) that received probiotics. Samples were treated with PMA, prior to bacterial DNA extraction. Meta-analysis highlighted a significant reduction in bacterial diversity in 68.8% of PMA treated samples as well as significantly reduced overall rare taxa abundance. Importantly, overall abundances of genera associated with protection from and propensity to NEC and sepsis such as: Bifidobacterium; Clostridium, and Staphylococcus sp. were significantly different following PMA-treatment. These results suggest non-viable cell exclusion by PMA-treatment reduces bias in gut microbiota analysis from which clinical inferences regarding patient susceptibility to NEC and sepsis are made.


Assuntos
Bactérias/classificação , Enterocolite Necrosante/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Azidas , Bactérias/genética , Bactérias/isolamento & purificação , Viés , Biodiversidade , DNA Bacteriano/genética , Enterocolite Necrosante/epidemiologia , Enterocolite Necrosante/mortalidade , Fezes/microbiologia , Humanos , Lactente , Recém-Nascido Prematuro , Reação em Cadeia da Polimerase , Probióticos/uso terapêutico , Propídio/análogos & derivados , RNA Ribossômico 16S/genética , Taxa de Sobrevida
18.
J Forensic Leg Med ; 44: 27-28, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27591339

RESUMO

Of all the drugs of forensic interest, none are more common or pervasive than alcohol. A thorough understanding of all aspects of alcohol pharmacokinetics and pharmacodynamics is essential for any clinical forensic practitioner. In rare cases interpretation of blood alcohol results may require questions to be asked about laboratory analysis. We present a case where an apparently positive blood alcohol result could have resulted in an unnecessary avenue of coronial investigation of a child death.


Assuntos
Acidose Láctica/complicações , Artefatos , Concentração Alcoólica no Sangue , Ensaios Enzimáticos , Reações Falso-Positivas , Feminino , Medicina Legal , Humanos , Lactente , Laboratórios Hospitalares , Pneumonia/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...